Abstract
T1-weighted image (T1WI) and T2-weighted image (T2WI) are the two routinely acquired Magnetic Resonance Imaging (MRI) protocols that provide complementary information for diagnosis. However, the total acquisition time of ~10 min yields the image quality vulnerable to artifacts such as motion. To speed up MRI process, various algorithms have been proposed to reconstruct high quality images from under-sampled k-space data. These algorithms only employ the information of an individual protocol (e.g., T2WI). In this paper, we propose to combine complementary MRI protocols (i.e., T1WI and under-sampled T2WI particularly) to reconstruct the high-quality image (i.e., fully-sampled T2WI). To the best of our knowledge, this is the first work to utilize data from different MRI protocols to speed up the reconstruction of a target sequence. Specifically, we present a novel deep learning approach, namely Dense-Unet, to accomplish the reconstruction task. The Dense-Unet requires fewer parameters and less computation, but achieves better performance. Our results have shown that Dense-Unet can reconstruct a 3D T2WI volume in less than 10 s, i.e., with the acceleration rate as high as 8 or more but with negligible aliasing artefacts and signal-noise-ratio (SNR) loss.
Original language | English |
---|---|
Title of host publication | Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings |
Editors | Julia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, Gabor Fichtinger, Alejandro F. Frangi |
Publisher | Springer Verlag |
Pages | 215-223 |
Number of pages | 9 |
ISBN (Print) | 9783030009274 |
DOIs | |
Publication status | Published - 2018 |
Event | 21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain Duration: 2018 Sept 16 → 2018 Sept 20 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 11070 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Other
Other | 21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 |
---|---|
Country/Territory | Spain |
City | Granada |
Period | 18/9/16 → 18/9/20 |
Bibliographical note
Publisher Copyright:© Springer Nature Switzerland AG 2018.
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science