Ultrasonication–dry-based synthesis of gold nanoparticle-supported CuFe on rGO nanosheets for competent detection of biological molecules

Vijayakumar Elayappan, Selvaganapathy Muthusamy, Gopiraman Mayakrishnan, Ramkumar Balasubramaniam, Yun Sung Lee, Hyun Sung Noh, Dawool Kwon, Mtangi Mohamed Mussa, Haigun Lee

    Research output: Contribution to journalArticlepeer-review

    16 Citations (Scopus)

    Abstract

    This study details the synthesis of gold (Au) nanoparticle-supported copper ferrite (CF) over reduced graphene oxide (Au-CF@rGO) through ultrasonication–dry synthesis techniques. The vigorous stormy mixing and acoustic cavitation acquired from the intense shock waves produced during ultrasonication can effectively irradiate the reaction conditions. The as-synthesized nanoparticles exhibit excellent crystallinity as well as homogeneous distribution over rGO nanosheets, as established by XRD, HR-TEM, Raman, XPS, and EDX analysis. Furthermore, the electrochemical analysis by cyclic voltammetry and differential pulse voltammetry (DPV) technique was accomplished by fabricating an Au-CF@rGO/GCE modified electrode. Interestingly, the DPV studies of the modified Au-CF@rGO/GCE electrode detects the dopamine (DA) in the linear concentration ranges from 0.001 to 119.6 µM, a low detection limit of 0.001 µM, a limit of detection of 0.34 nM, and enhanced sensitivity of 8.743 µAµM−1cm−2. The excellent electrochemical property towards the detection of DA indicates the successful formation of strongly anchored Au-CF nanoparticles on rGO nanosheets. Conversely, the modified Au-CF@rGO/GCE electrode shows excellent reproducibility, repeatability, and selectivity with excellent storage stability. In addition, the electrochemical sensor was used to examine real samples to determine the amount of DA present in commercially available banana milk samples, with a sensing efficiency of approximately 99%.

    Original languageEnglish
    Article number147415
    JournalApplied Surface Science
    Volume531
    DOIs
    Publication statusPublished - 2020 Nov 30

    Bibliographical note

    Funding Information:
    This work is supported by the Korea Basic Science Institute (KBSI) Grant No. D010200 and in part by the Brain Korea 21 Plus Project in 2020.

    Publisher Copyright:
    © 2020 Elsevier B.V.

    Keywords

    • Copper ferrite
    • Dry synthesis
    • Sensor
    • Ultrasonication
    • rGO

    ASJC Scopus subject areas

    • General Chemistry
    • Condensed Matter Physics
    • General Physics and Astronomy
    • Surfaces and Interfaces
    • Surfaces, Coatings and Films

    Fingerprint

    Dive into the research topics of 'Ultrasonication–dry-based synthesis of gold nanoparticle-supported CuFe on rGO nanosheets for competent detection of biological molecules'. Together they form a unique fingerprint.

    Cite this