TY - JOUR
T1 - Ultrathin, organic, semiconductor/polymer blends by scanning corona-discharge coating for high-performance organic thin-film transistors
AU - Jung, Hee Joon
AU - Shin, Yu Jin
AU - Park, Youn Jung
AU - Yoon, Sung Cheol
AU - Choi, Dong Hoon
AU - Park, Cheolmin
PY - 2010/9/9
Y1 - 2010/9/9
N2 - A new thin-film coating process, scanning corona-discharge coating (SCDC), to fabricate ultrathin tri-isopropylsilylethynyl pentacene (TIPS-PEN)/amorphous- polymer blend layers suitable for high-performance, bottom-gate, organic thin-fi lm transistors (OTFTs) is described. The method is based on utilizing the electrodynamic flow of gas molecules that are corona-discharged at a sharp metallic tip under a high voltage and subsequently directed towards a bottom electrode. With the static movement of the bottom electrode, on which a blend solution of TIPS-PEN and an amorphous polymer is deposited, SCDC provides an efficient route to produce uniform blend films with thicknesses of less than one hundred nanometers, in which the TIPS-PEN and the amorphous polymer are vertically phase-separated into a bilayered structure with a single-crystalline nature of the TIPS-PEN. A bottomgate fi eld-effect transistor with a blend layer of TIPS-PEN/polystyrene (PS) (90/10 wt%) operated at ambient conditions, for example, indeed exhibits a highly reliable device performance with a fi eld-effect mobility of approximately 0.23 cm 2 V-1 s-1: two orders of magnitude greater than that of a spincoated blend fi lm. SCDC also turns out to be applicable to other amorphous polymers, such as poly(α-methyl styrene) and poly(methyl methacrylate) and, readily combined with the conventional transfer-printing technique, gives rise to micropatterned arrays of TIPS-PEN/polymer films.
AB - A new thin-film coating process, scanning corona-discharge coating (SCDC), to fabricate ultrathin tri-isopropylsilylethynyl pentacene (TIPS-PEN)/amorphous- polymer blend layers suitable for high-performance, bottom-gate, organic thin-fi lm transistors (OTFTs) is described. The method is based on utilizing the electrodynamic flow of gas molecules that are corona-discharged at a sharp metallic tip under a high voltage and subsequently directed towards a bottom electrode. With the static movement of the bottom electrode, on which a blend solution of TIPS-PEN and an amorphous polymer is deposited, SCDC provides an efficient route to produce uniform blend films with thicknesses of less than one hundred nanometers, in which the TIPS-PEN and the amorphous polymer are vertically phase-separated into a bilayered structure with a single-crystalline nature of the TIPS-PEN. A bottomgate fi eld-effect transistor with a blend layer of TIPS-PEN/polystyrene (PS) (90/10 wt%) operated at ambient conditions, for example, indeed exhibits a highly reliable device performance with a fi eld-effect mobility of approximately 0.23 cm 2 V-1 s-1: two orders of magnitude greater than that of a spincoated blend fi lm. SCDC also turns out to be applicable to other amorphous polymers, such as poly(α-methyl styrene) and poly(methyl methacrylate) and, readily combined with the conventional transfer-printing technique, gives rise to micropatterned arrays of TIPS-PEN/polymer films.
UR - http://www.scopus.com/inward/record.url?scp=77956893116&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956893116&partnerID=8YFLogxK
U2 - 10.1002/adfm.201000032
DO - 10.1002/adfm.201000032
M3 - Article
AN - SCOPUS:77956893116
SN - 1616-301X
VL - 20
SP - 2903
EP - 2910
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 17
ER -