Abstract
Ultraviolet (UV) photodetectors based on ZnO nanoparticles (NPs) were fabricated and their optoelectronic properties were examined. The dominant photoluminescence (PL) peak of the ZnO NPs was located at a wavelength of 380 nm under the illumination of 325-nm wavelength light. The direct bandgap transition of the charge carriers at λ = 380 nm contributed to the photocurrent. The ratio of the photocurrent to the dark current (on/off ratio) was as high as 106, which is favorable for photodetectors. The decay time constant in the photoresponse was relatively small, while the rise time constant was relatively large. The reasons for the high on/off ratio and photoresponse characteristics are discussed in this paper.
Original language | English |
---|---|
Pages (from-to) | 2797-2801 |
Number of pages | 5 |
Journal | Ceramics International |
Volume | 35 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2009 Sept |
Bibliographical note
Funding Information:This work was supported by the National R&D Project for Nano Science and Technology (10022916-2006-22), the Center for Integrated-Nano-Systems (CINS) of the Korea Research Foundation (KRF-2006-005-J03601), the “SystemIC2010” project of the Korea Ministry of Commerce, Industry and Energy, the Korea Science and Engineering Foundation (KOSEF) through the National Research Lab. Program (R0A-2005-000-10045-02 (2007)), and the Nano R&D Program (M10703000980-07M0300-98010).
Keywords
- C. Optoelectrical properties
- D. ZnO
- Nanoparticles
- Photodetectors
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Materials Chemistry