Understanding the lithium–sulfur battery redox reactions via operando confocal Raman microscopy

Shuangyan Lang, Seung Ho Yu, Xinran Feng, Mihail R. Krumov, Héctor D. Abruña

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)

Abstract

The complex interplay and only partial understanding of the multi-step phase transitions and reaction kinetics of redox processes in lithium–sulfur batteries are the main stumbling blocks that hinder the advancement and broad deployment of this electrochemical energy storage system. To better understand these aspects, here we report operando confocal Raman microscopy measurements to investigate the reaction kinetics of Li–S redox processes and provide mechanistic insights into polysulfide generation/evolution and sulfur deposition. Operando visualization and quantification of the reactants and intermediates enabled the characterization of potential-dependent rates during Li–S redox and the linking of the electronic conductivity of the sulfur-based electrode and concentrations of polysulfides to the cell performance. We also report the visualization of the interfacial evolution and diffusion processes of different polysulfides that demonstrate stepwise discharge and parallel recharge mechanisms during cell operation. These results provide fundamental insights into the mechanisms and kinetics of Li–S redox reactions.

Original languageEnglish
Article number4811
JournalNature communications
Volume13
Issue number1
DOIs
Publication statusPublished - 2022 Dec

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

ASJC Scopus subject areas

  • General Physics and Astronomy
  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Understanding the lithium–sulfur battery redox reactions via operando confocal Raman microscopy'. Together they form a unique fingerprint.

Cite this