Valorization of food waste into hydroxymethylfurfural: Dual role of metal ions in successive conversion steps

Iris K.M. Yu, Daniel C.W. Tsang, Alex C.K. Yip, Season S. Chen, Yong Sik Ok, Chi Sun Poon

Research output: Contribution to journalArticlepeer-review

106 Citations (Scopus)

Abstract

This study aimed to transform food waste into a value-added chemical, hydroxymethylfurfural (HMF), and unravel the tangled effects induced by the metal catalysts on each single step of the successive conversion pathway. The results showed that using cooked rice and bread crust as surrogates of starch-rich food waste, yields of 8.1–9.5% HMF and 44.2–64.8% glucose were achieved over SnCl4 catalyst. Protons released from metal hydrolysis and acidic by-products rendered Brønsted acidity to catalyze fructose dehydration and hydrolysis of glycosidic bond. Lewis acid site of metals could facilitate both fructose dehydration and glucose isomerization via promoting the rate-limiting internal hydride shift, with the catalytic activity determined by its electronegativity, electron configuration, and charge density. Lewis acid site of a higher valence also enhanced hydrolysis of polysaccharide. However, the metals also catalyzed undesirable polymerization possibly by polarizing the carbonyl groups of sugars and derivatives, which should be minimized by process optimization.

Original languageEnglish
Pages (from-to)338-347
Number of pages10
JournalBioresource technology
Volume219
DOIs
Publication statusPublished - 2016 Nov 1
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2016 Elsevier Ltd

Keywords

  • Biomass conversion
  • Bread/rice
  • Homogeneous catalysis
  • Lewis acid
  • Metal chloride

ASJC Scopus subject areas

  • Bioengineering
  • Environmental Engineering
  • Renewable Energy, Sustainability and the Environment
  • Waste Management and Disposal

Fingerprint

Dive into the research topics of 'Valorization of food waste into hydroxymethylfurfural: Dual role of metal ions in successive conversion steps'. Together they form a unique fingerprint.

Cite this