Abstract
Particulate matter (PM) has been revealed to have detrimental effects on public health, social economy, agriculture, and so forth. Thus, it became one of the major concerns in terms of a factor that can reduce "quality of life" over East Asia, where the concentration is significantly high. In this regard, it is imperative to develop affordable and efficient prediction models to monitor real-time changes in PM concentration levels using digital images, which are readily available for many individuals (e.g., via mobile phone). Previous studies (i.e., DeepHaze) were limited in scope to priorly collected data and thereby less practical in providing real-time information (i.e., undermined interprediction). This drawback led us to hardly capture drastic changes caused by weather or regions of interests. To address this challenge, we propose a new method called Deep Q-haze, whose inference scheme is built on an online learning-based method in collaboration with reinforcement learning and deep learning (i.e., Deep Q-learning), making it possible to improve testing accuracy and model flexibility in virtue of real-time basis inference. Taking into account various experiment scenarios, the proposed method learns a binary decision rule on the basis of video sequences to predict, in real time, whether the level of PM10 (particles smaller than 10 in aerodynamic diameter) concentration is harmful (>80μg/m3) or not. The proposed model shows superior accuracy compared to existing algorithms. Deep Q-haze effectively accounts for unexpected environmental changes in essence (e.g., weather) and facilitates monitoring of real-time PM10 concentration levels, showing implications for better understanding of characteristics of airborne particles.
Original language | English |
---|---|
Article number | 9673047 |
Journal | Journal of Sensors |
Volume | 2019 |
DOIs | |
Publication status | Published - 2019 |
Bibliographical note
Funding Information:This paper was supported by Konkuk University in 2018.
Publisher Copyright:
© 2019 SungHwan Kim et al.
ASJC Scopus subject areas
- Control and Systems Engineering
- Instrumentation
- Electrical and Electronic Engineering