Abstract
A new voice activity detector for noisy environments is proposed. In conventional algorithms, the endpoint of speech is found by applying an edge detection filter that finds the abrupt changing point in a feature domain. However, since the frame energy feature is unstable in noisy environments, it is difficult to accurately find the endpoint of speech. Therefore, a novel feature extraction algorithm based on the double-combined Fourier transform and envelope line fitting is proposed. It is combined with an edge detection filter for effective detection of endpoints. Effectiveness of the proposed algorithm is evaluated and compared to other VAD algorithms using two different databases, which are AURORA 2.0 database and SITEC database. Experimental results show that the proposed algorithm performs well under a variety of noisy conditions.
Original language | English |
---|---|
Article number | 146040 |
Journal | Scientific World Journal |
Volume | 2014 |
DOIs | |
Publication status | Published - 2014 |
Bibliographical note
Publisher Copyright:© 2014 Jinsoo Park et al.
ASJC Scopus subject areas
- General Biochemistry,Genetics and Molecular Biology
- General Environmental Science