Abstract
The aim of this study was to evaluate the clinical, volumetric, radiographic, and histologic aspects of autogenous demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) used for ridge preservation, compared to those of deproteinized bovine bone with collagen (DBBC). Following atraumatic extraction, the socket was filled with DBBC, DDM, or rhBMP-2/DDM. Scanned images of dental casts and cone beam computed tomographs (CBCT) were superimposed for the calculation of soft and hard tissue volume alteration. Preoperative and postoperative measurements of the height and width of the alveolar ridge were compared using CBCT images. After 4 months, bone specimens were harvested for histomorphometric assessment. Loss of hard and soft tissue volume occurred at 4 months after extraction and ridge preservation in all groups. No volumetric differences were detected among the three groups before and 4 months after ridge preservation. The reduction in the horizontal width at 5 mm was higher in the DBBC compared to the DDM. Histologically, approximately 40% newly formed bone was founded in rhBMP-2/DDM group. The autogenous dentin matrix used to fill the socket was as beneficial for ridge preservation as conventional xenografts. The combination of rhBMP-2 with dentin matrix also demonstrated appreciable volumetric stability and higher new bone formation compared to DDM alone and DBBC.
Original language | English |
---|---|
Article number | 1288 |
Journal | Applied Sciences (Switzerland) |
Volume | 8 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2018 Aug 2 |
Bibliographical note
Funding Information:This work was supported by a grant from the Korea Health technology R&D project through the Korean Health Industry Development Institute, funded by the Ministry of Health &Welfare, Republic of Korea (grant number: HI15C3136). This work was supported by the Basic Science Research Program through the National Research Foundation funded by the Ministry of Education. (NRF-207R1D1A1B03028418).
Publisher Copyright:
© 2018 by the authors.
Keywords
- Autografts
- Bone morphogenetic proteins
- Bone regeneration
- Bone substitutes
- Cone-beam computed tomography
- Tooth extraction
ASJC Scopus subject areas
- General Materials Science
- Instrumentation
- General Engineering
- Process Chemistry and Technology
- Computer Science Applications
- Fluid Flow and Transfer Processes