Abstract
The literature on using yield curves to forecast recessions customarily uses 10-year–3-month Treasury yield spread without verification on the pair selection. This study investigates whether the predictive ability of spread can be improved by letting a machine learning algorithm identify the best maturity pair and coefficients. Our comprehensive analysis shows that, despite the likelihood gain, the machine learning approach does not significantly improve prediction, owing to the estimation error. This is robust to the forecasting horizon, control variable, sample period, and oversampling of the recession observations. Our finding supports the use of the 10-year–3-month spread.
Original language | English |
---|---|
Journal | Journal of Forecasting |
DOIs | |
Publication status | Accepted/In press - 2023 |
Keywords
- density forecasting
- estimation risk
- machine learning
- yield curve
ASJC Scopus subject areas
- Economics and Econometrics
- Computer Science Applications
- Statistics, Probability and Uncertainty
- Modelling and Simulation
- Strategy and Management
- Management Science and Operations Research